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INTRODUCTION— The notion of linear 2- normed spaces was introduced by S. Gahler. He further 

studies the topological studies of 2-normed spaces.  Iseki  introduced the notion of non-expansive mapping 

in 2- normed spaces. Then mathematician like Diminni and white further studied non-expansive mapping 

in linear 2- normed spaces and obtained the results of Iseki as their corollaries and they contributed a lot for 

the extension of this branch of mathematics, physics and other Science. 
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1. Let X be a linear space of dimension greater than 1 and let |||| be a real valued function defined on 

X × X such that :  

1. || a, b||  =  0 if any only if and b are linearly dependent,  

2. || a, b||  =  ||b, a||,  

3. ||a,  b|| = |  | ||a, b||, were  is real,  

4. ||a + b, c|| < ||a, b|| + ||a, c||.     

||||  is called a 2-norm on X and (X, |||| is a linear 2-normed space. By condition 2 and 4, a 2-

norm is non-negative.  

Definition :  If K is a convex subset of X, a mappings T : K X  is said to be non-expansive if for every 

x, y  K and z  X,   

1. ||T(x) – T (y), z|| ≤ ||x – y, z||.  

In the following, the real number system will be denoted by R. Also, a subset of L of x of 

the form {x1 + ax2 : a  R}, where x2 is non-zero, will be called a line.   

Theorem : Let K be a convex set which contains a least 2 elements and is none a subset of line. Then, T 

is non-expansive if and only if there is a c  R and there is a point z0  X such that |c| < 1 and T(x) = cx + 

z0, for every x  K. 

  

Proof-  Since all functions of the above type are non-expansive, we need show only that all non-

expansive maps are of this type.  

1. Assume first the 0  K and T (o) = 0. Then, for every x  X,  

2. ||T (x), z||<|| X, Z||. 

Therefore, for each x  K, there is a real number g(x) such that T(x) = g(x)x.  

 

http://www.jetir.org/


© 2017 JETIR July 2017, Volume 4, Issue 7                                                                 www.jetir.org (ISSN-2349-5162)  

JETIR1707061 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 345 
 

If x and y are independent elements of K, then 
2

1
 (x + y)  K also, and by (1),  
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which implies that g(x) = 






 

2

yx
g by the independence of x and y. Since a similar 

argument shows that g(y)= 






 

2

yx
g , it follows g(x) = g(y) whenever x and y are 

independent.  

If x and y are non-zero, independent elements of K, then since K is not a subset of a line, 

there is a z  K such that z and x and z and y are independent. By the arguments used 

above, g(x) = g(z) = g(y).  

Therefore, g(x) = g(y) for all non-zero x, y  K. Since T(0) = 0, there is a real number c 

such that T (x) cx for every x  K. Finally, (2) implies that |c| < 1.  

2. For arbitrary T and K which satisfy the hypotheses, choose and x  K’ = {x – x0 : x  K}. 

Then K’ is not contained in a since K is not a subset of a line, and x  K’. Define S : K’ x 

by  

||S(x – x0) – S(y – x0), z||=|| T (x) – T (y), z ||. 

< ||x –y, z||  

=||(x – x0) – (y – x0), z||. 

Hence, S is non-expansive on K’ and  

S(0) = S(x –x0) = T (x0) – T (x0) = 0  

By part 1, there is a c  R such that |C| < 1 and for every x  K,  

S(x – x0) = c (x – x0). 

Therefore, for every x  K, 

T(x) = cx + T (x0) – x0. 

The following example shows that the characterization fails if K is contained in a line.  

Example:  Suppose K is subset of the line L = T(x) = cx + T(x0) – x0.  

Define T : K   X by     .xsinαxxT 221   
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Then, if 21 αxx   and 21 xx  are in K and z  X, 

    ||,|||||,|||sinsin|||||,x||–αxxT|| 22221 zxzxzxT   

    .||,xαxx|| 221 zx   

Hence, T is a non-expansive mapping which does not satisfy Theorem 1. 

For convex sets which are subsets of lines, we have the following characterization of non-

expansive mappings. 

Theorem: Suppose K is a convex subset of line L = {x1 + x2 :  R}, where x1 K, and let { : x1 + 

x2  R}. Then, T : K  X is non-expansive if and only if there is a function g : A g(0) = 0 

and T (x1 + x2) = g() x2 + T (x1). 

Proof:     Again, since the sufficiency of the above conditions is clear, we deed only to prove the 

necessity. 

1. Assume X1 = 0 and T(0) = 0. Then, for every   A and z  X, (3) ||T (x2), z ||<|| x2, z||.  

Therefore, for every non-zero   A, there is a real number g () such that |g () – g(  ) |<| 

 –  | for every ,   A.  

2. If x1 = 0 or T(x1) = 0 let  .Aα:xK 2  Then, K’ is convex,  0  K’,  and 

 .Rα:xK 2  Define S : K’ X by 

   112 αxxTαxS  – T(x1)  

for every A. Note that S(0) = 0 and for α, A and z  X,  

        .||x,x-x||||z,γxxTαxxT||||z,γxSαxS|| 22212122   

Therefore, since S and K’ satisfy the assumptions made in part 1, it follows that there is a 

function g : A  R such     .xαgαxS 22   Hence, for every  A,      .xTxαgαxxT 1221   

It is known that in a strictly convex 2-normed space, the set F(T) of fixed points of a non-

expansive T is always a convex set. This result can now be proven for any 2-normed space. 
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